Revision on fuzzy artificial potential field for humanoid robot path planning in unknown environment
نویسندگان
چکیده
Path planning in a completely known environment has been experienced various ways. However, in real world, most humanoid robots work in unknown environments. Robots’ path planning by artificial potential field and fuzzy artificial potential field methods are very popular in the field of robotics navigation. However, by default humanoid robots lack range sensors; thus, traditional artificial potential field approaches needs to adopt themselves to these limitations. This paper investigates two different approaches for path planning of a humanoid robot in an unknown environment using fuzzy artificial potential (FAP) method. In the first approach, the direction of the moving robot is derived from fuzzified artificial potential field whereas in the second one, the direction of the robot is extracted from some linguistic rules that are inspired from artificial potential field. These two introduced trajectory design approaches are validated though some software and hardware in the loop simulations and the experimental results demonstrate the superiority of the proposed approaches in humanoid robot real-time trajectory planning problems.
منابع مشابه
Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملPath Planning of Mobile Robot Using Fuzzy - Potential Field Method
This paper deals with the navigation of a mobile robot in unknown environment using artificial potential field method. The aim of this paper is to develop a complete method that allows the mobile robot to reach its goal while avoiding unknown obstacles on its path. An approach proposed is introduced in this paper based on combing the artificial potential field method with fuzzy logic controller...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملHumanoid robot path planning with fuzzy Markov decision processes
In contrast to the case of known environments, path planning in unknown environments, mostly for humanoid robots, is yet to be opened or further development. This is mainly attributed to the fact that obtaining thorough sensory information about an unknown environment is not unctionally or economically applicable. This study alleviates the latter problem by resorting to a novel approach through...
متن کاملPSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety
In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015